
Copyright � 2003 Ascential Software Corporation
50 Washington Street, Westboro, MA 01581

All rights reserved.

Technical Bulletin
Part No. 74-0128

DataStage MS OLEDB

This technical bulletin describes Release 2.0 of the DataStage MS OLEDB
stage, formerly called the DataStage OLE DB plug-in. This stage to read
and write data to and from any type of data source. It also creates local
multidimensional cubes, and loads the cubes with the data from the
underlying database.

© 1999–2003 Ascential Software Corporation. All rights reserved. Ascential, Ascential Software,
DataStage, MetaStage, MetaBroker, and Axielle are trademarks of Ascential Software Corporation or
its affiliates and may be registered in the United States or other jurisdictions. Adobe Acrobat is a trade-
mark of Adobe Systems, Inc. Microsoft, Windows, Windows NT, and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other coun-
tries. UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. Other marks mentioned are the property of the owners of those
marks.

This product may contain or utilize third party components subject to the user documentation previ-
ously provided by Ascential Software Corporation or contained herein.

Printing History
First Edition (74-0128) for Release 1.0, July 1999
Second Edition (74-0128) for Release 1.1, March 2000
Third Edition (74-0128) for Release 2.0, July 2000
Updated for Release 2.0, August 2002
Updated for Release 2.0, August 2003

How to Order Technical Documents
To order copies of documents, contact your local Ascential subsidiary or distributor, or call our main
office at (508) 366-3888.

Documentation Team: Marie E. Hedin

August 2003 74-0128
Introduction
This technical bulletin describes the following for Release 2.0 of DataStage
MS OLEDB for DataStage Release 7.0:

• Functionality
• Installation
• Defining the MS OLEDB stage
• Connecting to an MS OLEDB data source
• Creating and populating cubes
• Defining character set mapping
• Defining input links
• Creating and populating cubes
• Defining output links
• MS OLEDB server data type support
• Stored procedure support
• CREATE CUBE and INSERT INTO statements

MS OLEDB provides a user-friendly client GUI. You can install the GUI separately
from MS OLEDB on the server. Or, you can use the server MS OLEDB stage
without installing the custom GUI on the client. If it is not installed, you can still
use the property grid interface.

MS OLEDB is a passive stage that lets DataStage retrieve information from any
type of information repository, such as a relational source, an ISAM file, a personal
database, or a spreadsheet. This stage uses OLE DB SDK that is part of Microsoft
Data Access SDK (MDAC). For more information about Microsoft Data Access,
consult your MDAC documentation.

Note: You can also use this stage to create a local cube file, and load the cube with
the data from the underlying database. You can use the CREATE CUBE
and INSERT INTO statements to do this (see the examples on page 35).

However, you cannot create a cube on the OLAP server yet since MSOLAP
does not currently support this. Additionally, there is no GUI browser for
local cube files, but you can modify the MDX sample application that
comes with the Microsoft SQL Server for OLAP Services software to
browse local cube files.

You can use any number of input, output, or reference output links with this stage:

• Input links specify the data you are writing, which is a stream of rows to be
loaded into the data source.
DataStage MS OLEDB 1

74-0128 August 2003
• Output links specify the data you are extracting, which is a stream of rows
to be read from the data source. You can specify the data on an input or an
output link using an SQL statement constructed by DataStage or a user-
defined query.

• Each reference output link represents rows that are key read from the data
source. The link uses the key columns in a WHERE clause of the SELECT
statement that is constructed by DataStage or specified by the user.

The MS OLEDB stage can read and write data directly without SQL statements. Or,
the stage can use SQL statements generated by the stage or user-defined SQL
statements.

For More Information. For information about using stages and related topics, see
the following table:

Functionality
The MS OLEDB stage can do the following:

• Create local multidimensional databases called local cube files, and load
these cubes with the data from the underlying database.

• Support stream input, stream output, and reference output links.

• Specify the number of rows to retrieve from the data source.

• Specify the number of rows to update at one time.

If you want information on… Then see…

Using a stage in a DataStage job DataStage Server Job Developer’s Guide

Pivot Table Service Microsoft SQL Server for OLAP Services or
Microsoft Data Access Component SDK
documentation

Cubes “Pivot Table Service” in the online
Microsoft SQL Server for OLAP Services
documentation

Using synchronous initialization
and isolation levels

OLE DB documentation

Using MetaStage MetaStage User’s Guide

Using NLS DataStage Designer Guide or DataStage NLS
Guide
2 DataStage MS OLEDB

August 2003 74-0128
• Specify the isolation level used for transactions.

• Specify the number of rows to write before committing them.

• Control the type of tracing information to add to the log.

• Specify which generated or user-defined SQL statements to execute for
reading or writing data.

• Specify additional clauses to append to the generated SQL statements.

• Specify SQL statements to run before and after processing job data rows.

• Specify which mode to use to retrieve or insert data.

• Browse source or target data using the GUI.

• Support MetaStage. For information, see MetaStage User’s Guide.

• Import table and column definitions from the target OLE DB data source
and store them in the DataStage Repository. For more information about
meta data import, see DataStage Server Job Developer’s Guide.

• Use NLS (National Language Support). For information, see DataStage NLS
Guide.

Terminology
The following table lists the Microsoft OLAP Services Bulk Load terms used in this
document:

Term Description

Dimension A collection of measures and a set of dimensions. Each measure
has an aggregate function, and each dimension contains one or
more level. Optionally, dimensions can include multiple hierar-
chies. Each hierarchy contains levels.

Objects Distinct items in the database such as dimensions, variables,
formulas, and so forth. Used to create OLAP applications to
access, manipulate, and display data stored in a multidimen-
sional database management system.

OLAP Online Analytical Processing. This processing uses multidi-
mensional data.

UNC Universal Naming Convention. A PC format that specifies the
location of resources on a network.
DataStage MS OLEDB 3

74-0128 August 2003
Installing the Plug-In
For instructions and information supporting the installation, see DataStage Plug-In
Installation and Configuration Guide.

Valueset An object that contains a list of dimension values for a partic-
ular dimension.

Variable An object that stores the actual data. All of the data in a variable
represents the same unit of measurement with the same data
type. Typically a variable is a multidimensional array, from
which you can uniquely select any data value within it by spec-
ifying one member from each of its dimensions.

Term Description
4 DataStage MS OLEDB

August 2003 74-0128
Defining the MS OLEDB Stage
When you use the custom GUI to edit an MS OLEDB stage, the MSOLEDB Stage
dialog box appears:

This dialog box has the Stage, Input, and Output pages (depending on whether
there are inputs to and outputs from the stage):

• Stage. This page displays the name of the stage you are editing. The
General page defines the MS OLEDB tracing, provider, connection, and
login information. The properties on this page define the connection to the
OLE DB data source. Additionally, you can specify information to create
and populate a cube. For connection details, see “Connecting to an OLE DB
Data Source” on page 6.
DataStage MS OLEDB 5

74-0128 August 2003
The NLS page defines a character set map to use with the stage. This page
appears only if you have installed NLS for DataStage. For details, see
“Defining Character Set Mapping” on page 14.

Note: You cannot change the name of the stage from this dialog box. For
details on changing stage names, see DataStage Designer Guide.

• Input. This page is displayed only if you have an input link to this stage. It
specifies the data source to use and the associated column definitions for
each data input link. It also specifies how data is written, the transaction
isolation level, array size, and tracing information used to write data to a
data source.

• Output. This page is displayed only if you have an output or reference link
to this stage. It specifies the data sources to use and the associated column
definitions for each data output link. It also specifies how to read the data,
the transaction isolation level, array size, and tracing information used to
read the data.

The main phases in defining an MS OLEDB stage from the MSOLEDB Stage
dialog box are as follows:

1. Connect to an OLE DB data source. (See page 6).

2. Optional. Generate a new connection string. (See page 8).

3. Optional. Use the cube wizard to define a cube. (See page 8).

4. Optional. Define a character set map (see page 14).

5. Define the data on the input links (see page 15).

6. Define the data on the output links (see page 22).

Connecting to an OLE DB Data Source
The OLE DB connection parameters are set on the General page of the Stage page.
Specify the appropriate information using the following button and fields:

• Trace properties. If selected, adds tracing information about stage and link
properties to the log at run time.

• Trace performance. If selected, adds tracing information about perfor-
mance, such as link timing information, to the log.

• Trace events. If selected, adds tracing information about important events,
such as initialization messages, to the log.
6 DataStage MS OLEDB

August 2003 74-0128
• Connection Wizard. Opens the Data Link Properties dialog box, where
you specify the data you want to connect to. This standard Microsoft OLE
DB connection dialog box contains the Provider, Connection, Advanced,
and All pages. Click Next >> to specify additional properties, such as the
machine name, for the selected provider.

• Connection string. Displays the connection information that you entered
using the Connection Wizard. If you do not use the wizard, you can enter
the information directly into this field.

• Password property name. The property name for the provider password, if
the provider requires it. If you do not use the wizard, you can also enter the
information directly into the Connection string field, but it will not be
encrypted unless you enter it in the Password property name field.

• Password. The encrypted password for the provider. For security, it
displays asterisks instead of the value you enter. If you do not use the
wizard, you can also enter the information directly into the Connection
DataStage MS OLEDB 7

74-0128 August 2003
string field, but it will not be encrypted unless you enter it in the Password
field.

• Cube Wizard. Click to open the Data Link properties dialog box, where
you connect to the Microsoft OLE DB provider for OLAP Services. This is
the same dialog box that you open from the Connection Wizard for the
General page of the Stage page with the additional provider. You then go
to the All page to specify the parameters to create and populate a local
cube file. For details, see “Creating and Populating Cubes” on page 8.

• Create and populate cube. Displays the connection information that you
entered using the Cube Wizard. If you do not use the wizard, you can enter
the information directly into this field.

• Description. Optionally, describe the purpose of the MS OLEDB stage.

Creating and Populating Cubes
The MS OLEDB stage loads data to and from a database table. It also provides
functionality to create local multidimensional databases called local cube files, and
loads these cubes with the data from the underlying database.

It uses the Microsoft Pivot Table Service Provider (MSOLAP) to create and popu-
late the cubes. MSOLAP does not distinguish between the creation of a cube and
inserting into or populating the cube. This is because an INSERT INTO statement
must be used with the CREATE CUBE statement to provide structure for a multi-
dimensional database.

Note: Currently MSOLAP does not support cube creation on the OLAP server.
Therefore, a cube is a local cube file.

You can view a cube file as a multidimensional data repository. Each cube file ends
in a .cub extension and can contain multiple cubes. Each cube in the file can contain
multiple catalogs.

For example, suppose the Sales.Cub is the multidimensional data repository. The
CREATE CUBE statement creates the Sales_USA, Sales_India, Sales_UK, and
Sales_Rest cubes. The INSERT INTO statement creates the North and South cata-
logs inside Sales_USA, the All catalog inside Sales_India, and the All catalog inside
Sales_Rest. Every INSERT INTO statement must be used with a corresponding
8 DataStage MS OLEDB

August 2003 74-0128
CREATE CUBE statement. If the specified cube already exists, the statement is
ignored. Otherwise, it is created and a new catalog specified by the INSERT INTO
statement is created in that cube.

To edit the data link properties to create the cube:

1. Click Cube Wizard from the General page of the Stage page to connect to the
provider. You can also enter the connection string information in the Create
and populate cube field on the same page. In this case, the cube is created at
the end of the table loading process.

Note: Release 2.0 of the MS OLEDB stage must have only one input link and no
output links to create the cube successfully. You should not use multiple input
links or input and output links in the same MS OLEDB stage.

2. Select Microsoft OLE DB Provider for OLAP Services. The Data Link
Properties dialog box appears.

3. Click the All tab, then specify the parameters to create and populate a
local cube file.

4. Select the parameter, then click Edit Value… to enter the appropriate
information for the data link initialization properties described in the
following table. The following table describes the most important proper-
ties. Supply information for the Data Source, CREATECUBE,
INSERTINTO, SOURCE_DSN, User ID, and Password properties:

Data Link Properties

Property Description

ARTIFICIALDATA The artificial aggregate values calculated instead of
calculating real values. These values are calculated using
a simple algorithm when the first character of this string
is Y, T, or a numeric digit other than 0.

Data Source The name of the local cube file you want to create. The
default extension for a local cube file is .cub, but any
extension can be used.

Initial Catalog The name of the default initial database catalog. Use this
property unless you are creating a local cube. The value
is used when a session is established, but you cannot
change the value during the session.
DataStage MS OLEDB 9

74-0128 August 2003
CREATECUBE The CREATE CUBE statement to create a local cube file.
You must use this property if you also use the
INSERTINTO and SOURCE_DSN properties. These
three properties are always used together.
This value is used when a session is established, but you
cannot change it during the session.

INSERTINTO The INSERT INTO statement to populate a local cube file
that was created using the CREATE CUBE statement.

SOURCE_DSN The ODBC connection string, OLE DB connection string,
or DSN for the source relational database, used only
when creating a local cube file.

User ID The ODBC UID for the source database, used only when
creating a local cube file.

Password The ODBC PWD for the source database, used only
when creating a local cube file.

Auto Synch Period Specifies how often queries are made to the source data-
base. The default value on the server is 10,000
milliseconds (10 seconds).
By setting this property to a null value or 0, automatic
synchronization is turned off, and synchronization does
not occur at a constant interval. The frequency of
synchronization depends on client activity.
Some client queries are resolved solely from the client
cache. Therefore, a high value can cause more frequent
query results that do not reflect recent updates in the
data source. A low value can reduce the likelihood of
these events.
However, a low value can impede performance. The
lowest valid, nonzero value is 250 milliseconds. A value
of 250 milliseconds is used for any value from 1 to 249.
This value is used when a session is established, but you
cannot change it during the session.

Cache Policy Specifies information about memory.

Data Link Properties (Continued)

Property Description
10 DataStage MS OLEDB

August 2003 74-0128
Client Cache Size The specified number of kilobytes (KB) of memory in the
client cache.
If set to 0, the client cache can use unlimited memory.
If set to a value from 1 to 99, the client cache can use the
specified percentage of total available virtual memory
(physical and page file).
If this property is set to 100 or more, the client cache can
use up to the specified KB of memory.
This value is used when a session is established, but you
cannot change it during the session.

CompareCaseSensitive
StringFlags

The flags used in case-sensitive string comparisons to
control string comparisons and sort order.

CompareCaseNotSensitive
StringFlags

The flags used in string comparisons that are not case-
sensitive to control string comparisons and sort order.
This property is used more frequently in NLS versions.
The default is the value of the CompareCaseSensitive
StringFlags registry on the client if this registry exists.

Default Isolation Mode If the first character of this string is Y, T, or a numeric
digit other than 0, the isolation level is isolated.
Otherwise, the isolation level is determined by the cursor
type requested by the rowset properties. For more infor-
mation about isolation levels, see the OLE DB
documentation.

Execution Location The location of the query execution. Use one of the
following values:
0 - The default value. This is equivalent to a value of 1.
1 - The automatic selection of query execution location,
either client or server.
2 - The query executes on the client.
3 - The query executes on the server. Exceptions include
queries that contain session-scoped calculated members,
user-defined sets, or user-defined functions.

Data Link Properties (Continued)

Property Description
DataStage MS OLEDB 11

74-0128 August 2003
Large Level Threshold Specifies whether dimension levels are sent from the
server to the client incrementally or in their entirety.
Dimension levels that contain a number of members
greater than or equal to the value of this property are
sent incrementally.
A level that contains fewer members than the value of
this property is sent to the client in its entirety. This helps
manage client memory usage.
The default value is set on the server in the Large level
defined as box in the Data Link Properties dialog box.
The minimum value is 10. Settings less than 10 are
ignored, and the minimum value is used. In this case, no
error is returned.

Locale Identifier The ID for the locale (LCID), which the client can modify
by setting the DBPROP_INIT_LCID property.
Pivot Table Service can have only one LCID per
Windows process. The LCID must be installed in Control
Panel in Windows, or the attempt to set the LCID fails.
By default, the DBPROP_INIT_LCID is reported as null.

SOURCE_DSN_SUFFIX The suffix used only when creating or connecting to a
local cube. This value is not stored in the local cube file.
This property is useful for separating data persisted in
the local cube file from data used only for the session.
(Session data includes user account and password.)

USEEXISTINGFILE Specifies whether to connect to the existing local cube. If
the first character of this value is Y, T, or a numeric digit
other than 0, and the cube file specified in the Data
Source property already exists, the CREATECUBE and
INSERTINTO properties are ignored. A connection to the
existing local cube is established.
If this value is not used, or the first character of this value
is not Y, T, or a numeric digit other than 0, and the cube
file specified in the Data Source property already exists,
the statements in the CREATECUBE and INSERTINTO
properties overwrite the existing cube file.

Data Link Properties (Continued)

Property Description
12 DataStage MS OLEDB

August 2003 74-0128
For details about the CREATE CUBE and INSERT INTO statements, see page 30
and page 32. For more information about Pivot Table Service, see the documenta-
tion for Microsoft SQL Server for OLAP Services and Microsoft Data Access
Component SDK.

Writeback Timeout The number of seconds before an update occurs. The
attempt to communicate updates is triggered by a
commit, which begins a counting of seconds. The
counting continues until the commit is successful or the
specified number of seconds is reached.
If this value is reached, the commit fails and the update
does not occur. You can then attempt another commit or
a rollback.

Data Link Properties (Continued)

Property Description
DataStage MS OLEDB 13

74-0128 August 2003
Defining Character Set Mapping
You can define a character set map for a stage. Do this from the NLS tab that
appears on the Stage page. The NLS page appears only if you have installed NLS.

Specify information using the following button and fields:

• Map name to use with stage. The default character set map is defined for
the project or the job. You can change the map by selecting a map name
from the list.

• Use Job Parameter… . Specifies parameter values for the job. Use the
format #Param#, where Param is the name of the job parameter. The string
#Param# is replaced by the job parameter when the job is run.

• Show all maps. Lists all the maps that are shipped with DataStage.

• Loaded maps only. Lists only the maps that are currently loaded.

For more information about NLS or job parameters, see DataStage NLS Guide or
DataStage Designer Guide.
14 DataStage MS OLEDB

August 2003 74-0128
Defining an Input Link
When you write data to a data source, the MS OLEDB stage has an input link.
Define the properties of this link and the column definitions of the data on the
Input page in the MSOLEDB Stage dialog box.

About the Input Page
The Input page has an Input name field, the General, Columns, and SQL pages,
and the Columns… and View Data… buttons. (The View Data… button is
disabled in this release.)

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list displays all the input
links to the MS OLEDB stage.

• Click the Columns… button to display a brief list of the columns desig-
nated on the input link. As you enter detailed meta data in the Columns
page, you can leave this list displayed.

• Click the View Data… button to start the Data Browser. This lets you look
at the data associated with the input link. For a description of the Data
DataStage MS OLEDB 15

74-0128 August 2003
Browser, see DataStage Designer Guide. (The View Data… button is disabled
in this release.)

General Page

This page is displayed by default. Enter the appropriate information for the
following fields:

• Table name. The name of the target data source to insert data into. It is
used to generate an SQL statement. It is also used when the Input action
field is set to Direct write. There is no default. You can also click the …
button at the right of the Table name field to browse the Repository to
select the data source.

• Input action. Specifies which stage-generated SQL statements are used to
update the target data source. Some actions require key columns to update
or delete rows. Choose one of the following options:

Direct write. Opens the data source for writing without using SQL
statements. (Not all providers support this option.)

Clear table then insert rows. Uses the SQL DELETE statement to clear the
table before using the SQL INSERT statement to write the rows to the
table.

Truncate table then insert rows. Uses the SQL TRUNCATE statement to
truncate the table before inserting rows.

Insert rows without clearing. Like Direct write, but uses the SQL
INSERT statement to write to the data source. This is the default.

Delete existing rows only. Uses the SQL DELETE WHERE statement to
delete rows from the target data source. The values of the DataStage key
columns determine which rows to delete.

Replace existing rows completely. Uses the SQL DELETE WHERE
statement to delete rows from the target data source before inserting new
rows.

Update existing rows only. Uses the SQL UPDATE WHERE statement to
update existing rows in the target data source.

Update existing rows or insert new rows. Uses the SQL UPDATE
WHERE statement to update existing rows. If it fails, it uses the SQL
INSERT statement to insert missing rows.
16 DataStage MS OLEDB

August 2003 74-0128
Insert new rows or update existing rows. Uses the SQL INSERT
statement to insert rows. If a row exists, it tries to use the SQL UPDATE
WHERE statement to update the row.

• SQL generation. Determines if the stage generates SQL statements or uses
user-defined SQL statements. Choose one of the following options:

Yes. Specifies that the stage generates SQL statements. This is the default.

No. Specifies that the stage uses user-defined SQL statements.

• Transaction isolation. Specifies the isolation level that provides the neces-
sary consistency and concurrency control between transactions in the job
and other transactions for optimal performance. Choose one of the
following options:

Read committed. Takes exclusive locks on modified data and sharable
locks on all other data. Each query executed by a transaction sees only
data that was committed before the query (not the transaction) began.
This is the default.

Read uncommitted. Takes exclusive locks on modified data.
Transactions are not isolated from each other. So that they do not
adversely affect other transactions, transactions running at this level are
usually read-only.

Repeatable read. The transaction waits until rows write-locked by other
transactions are unlocked. This prevents it from reading any dirty data.
The transaction holds read locks on all rows it returns to the application
and write locks on all rows it inserts, updates, or deletes.

Serializable. Takes exclusive locks on modified data and sharable locks
on all other data. The transaction waits until rows write-locked by other
transactions are unlocked. This prevents it from reading any dirty data.

• Transaction size. The number of rows that the stage processes before
committing a transaction to the data source. The default is 100, meaning
100 rows are written before being committed. This field is ignored for
nonlogging data sources.

• Array size. The maximum number of rows read at a time, that is, the array
binding size. This property provides delayed update capability, meaning
that changes for every row inserted are held in the cache for the rowset
before the rows are updated in the data source. Delayed retrieval helps to
reduce network traffic, resulting in better performance. If the value for this
property exceeds the provider-specified limit, it is set to the provider limit.
The default is 100.
DataStage MS OLEDB 17

74-0128 August 2003
• Trace properties. If selected, adds tracing information about stage and link
properties to the log at run time.

• Trace performance. If selected, adds tracing information about perfor-
mance, such as link timing information, to the log.

• Trace events. If selected, adds tracing information about important events,
such as initialization messages, to the log.

• Description. Optionally enter text to describe the purpose of the link.

Columns Page

This page contains the column definitions for the data written to the data source.
The Columns page behaves the same way as the Columns page in the ODBC
stage. For a description of how to enter and edit column definitions, see DataStage
Designer Guide.

SQL Page

This page displays the stage-generated or user-defined SQL statements used to
write data to a data source. It contains the Generated, User-defined, Before, and
After pages, which are the same as those for the Output page under the SQL page.

• Generated. It contains the SQL statements constructed by DataStage that
are used to write data to the data source. You cannot edit these statements,
but you can use Copy to copy them to the Clipboard for use elsewhere.

• User-defined. This page is displayed by default. It contains the SQL state-
ments executed to write data to the data source. The GUI displays the
stage-generated SQL statement on this page as a starting point. However,
you can enter any valid, appropriate SQL statement. The box size changes
proportionately when you resize the main window to display long SQL
statements.

• Before. This page contains the SQL statements executed before the stage
processes any job data rows. Use a semicolon (;) to separate multiple
BeforeSQL statements. The SQL statement is entered in a resizable edit box.
Execution occurs immediately after a successful data source connection.
The Before and After pages look alike.

• After. This page contains the SQL statements executed after the stage
processes any job data rows. Use a semicolon (;) to separate multiple
AfterSQL statements. The SQL statement is entered in a resizable edit box.
Execution occurs immediately after the last row is processed, before the
18 DataStage MS OLEDB

August 2003 74-0128
data source connection is terminated. The Before and After pages look
alike.

Writing Data to OLE DB
The following sections describe the differences when you use generated or user-
defined SQL INSERT, DELETE, or UPDATE statements to write data from
DataStage to a data source. You can also execute BeforeSQL or AfterSQL state-
ments before or after the stage processes job data rows.

Using Generated SQL Statements

By default, DataStage writes data to a data source using an SQL INSERT, DELETE,
or UPDATE statement that it constructs. The generated SQL statement is automat-
ically constructed using the DataStage table and column definitions that you
specify in the input properties for this stage. The Generated page on the SQL page
displays the SQL statement used to write the data.

To use a generated statement:

1. Enter a table name in the Table name field on the General page of the Input
page.

2. Specify how you want the data to be written by choosing an option from
the Input action list box. See “General Page” on page 16 for a description
of the input actions.

3. Optional. Enter a description of the input link in the Description field.

4. Click the Columns tab on the Input page.

5. Edit the Columns grid to specify the column definitions for the columns
you want to write. The SQL statement is automatically constructed using
your chosen input action and the columns you have specified. You can
now optionally view this SQL statement.

6. Click the SQL tab on the Input page, then the Generated tab to view this
SQL statement. You cannot edit the statement here, but you can always
access this tab to select and copy parts of the generated statement to paste
into the user-defined SQL statement.

7. Click OK to close this dialog box. Changes are saved when you save your
job design.
DataStage MS OLEDB 19

74-0128 August 2003
Using User-Defined SQL Statements

Instead of writing data using an SQL statement constructed by DataStage, you can
enter your own SQL INSERT, DELETE, or UPDATE statement or call stored proce-
dures for each MS OLEDB input link. Ensure that the SQL statement contains the
table name, the type of input action you want to perform, and the columns you
want to write.

To use your own SQL statement:

1. Set SQL generation to No on the General page of the Input page.

2. Specify how you want the data to be written by choosing an option from
the Input action drop-down list box. See “General Page” on page 16 for a
description of the input actions.

3. Click the SQL tab, then the User-defined tab. By default you see the
stage-generated SQL statement. You can edit this statement or enter your
own SQL statement to write data to the target data sources. This state-
ment must contain the table name, the type of input action you want to
perform, and the columns you want to write.

When writing data, the INSERT statements must contain a VALUES clause
with a parameter marker (?) for each stage input column. UPDATE state-
ments must contain a SET clause with parameter markers for each stage input
column. UPDATE and DELETE statements must contain a WHERE clause
with parameter markers for the primary key columns.

The type of SQL statement used depends on the number of parameters and
key columns required. The parameter markers must be in the same order as
the associated columns listed in the stage properties. Use statements such as
the following:

The size of this box changes proportionately when the main window is resized
in order to conveniently display very long or complex SQL statements.

If a statement has… Use a statement like…

As many parameters as
there are key columns

DELETE from TABLE WHERE Key1=? and Key2=?

As many parameters as
there are columns

INSERT into TABLE (Col1, Col2) VALUES (?, ?)

As many parameters as
there are columns and key
columns

UPDATE TABLE SET Col1=?, Col2=?, Key1=?,
Key2=? WHERE Key1=? and Key2=?
20 DataStage MS OLEDB

August 2003 74-0128
Unless you specify a user-defined SQL statement, the stage automatically
generates an SQL statement.

If you specify multiple SQL statements, each is executed as a separate transac-
tion. End SQL statements using a semicolon (;) as the end-of-batch signal. You
cannot combine multiple INSERT, UPDATE, and DELETE statements in one
batch. You must execute each in a separate command batch.

4. Click OK to close the this dialog box. Changes are saved when you save
your job design.

Using BeforeSQL Statements

You can execute SQL statements before the stage processes any job data rows. To
specify SQL statements before processing any data:

1. Enter the SQL statements you want to be executed before data is processed in
the text entry area on the Before page of the SQL page.

Execution occurs immediately after a successful data source connection. If you
specify multiple SQL statements, they are executed as one or more Transact-
SQL command batches using a semicolon (;) as the end-of-batch signal.

2. Select the Treat errors as non-fatal check box to log BeforeSQL execution
errors as warnings. Processing continues with the next command batch, if
any. Each successful execution is committed as a separate transaction.

If this check box is cleared, BeforeSQL execution errors are considered fatal to
the job and result in a transaction rollback. The transaction is committed only
if all BeforeSQL statements successfully execute.

Using AfterSQL Statements

You can execute SQL statements after the stage processes all job data rows. To
specify SQL statements after processing data:

1. Enter the SQL statements you want to be executed after the data is processed
in the text entry area on the After page of the SQL page.

Execution occurs immediately before the data source connection is terminated.
If you specify multiple SQL statements, they are executed as one or more
Transact-SQL command batches using a semicolon (;) as the end-of-batch
signal.

2. Select the Treat errors as non-fatal check box to log AfterSQL execution
errors as warnings. Processing continues with the next command batch, if
any. Each successful execution is committed as a separate transaction.
DataStage MS OLEDB 21

74-0128 August 2003
If this check box is cleared, AfterSQL execution errors are considered fatal to
the job and result in a transaction rollback. The transaction is committed only
if all AfterSQL statements successfully execute.

Defining an Output Link
When you read data from a data source, the MS OLEDB stage has an output link.
Define the properties of this link and the column definitions of the data on the
Output page in the MSOLEDB Stage dialog box.

About the Output Page
The Output page has an Output name field, the General, Columns, Selection, and
SQL pages, and the Columns… and View Data… buttons. (The View Data…
button is disabled in this release.) The pages displayed depend on how you specify
the SQL statement to output the data.

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list displays all the
output links from the MS OLEDB stage.
22 DataStage MS OLEDB

August 2003 74-0128
• Click the Columns… button to display a brief list of the columns desig-
nated on the output link. As you enter detailed meta data in the Columns
page, you can leave this list displayed.

• Click the View Data… button to start the Data Browser. This lets you look
at the data associated with the output link. For a description of the Data
Browser, see DataStage Server Job Developer's Guide. (The View Data…
button is disabled in this release.)

General Page

This page is displayed by default. Enter the appropriate information for the
following fields:

• Table names. This field contains the names of the data sources to retrieve
data from. These tables must exist or be created and populated by the
BeforeSQL statements. You can also click the … button at the right of the
Table names field to browse the Repository to select tables.

Separate multiple table names by a comma (,). You must have select
privileges on each table. There is no default.

This property is used to generate an SQL statement. It is also used when the
Output action field is set to Direct read. If SQL generation is set to No,
Table names is ignored. You must specify Table names if SQL generation
is set to Yes.

Additionally, you can use a job parameter to specify the data source. For
details on how to use define and use job parameters, see DataStage Server Job
Developer's Guide.

• Output action. Specifies whether to retrieve data by directly reading the
data source or to use SQL statements. You can only use a single SELECT
statement. Choose one of the following options:

SQL. Specifies that the data is extracted using SQL statements. This is the
default.

Direct read. Specifies that the data is extracted by directly reading the data
source.

• SQL generation. Determines if the stage generates SQL statements or uses
user-defined SQL statements to retrieve data. Choose one of the following
options:

Yes. Specifies that the stage generates an uneditable SQL statement.
When this option is selected, the Generated page appears. You cannot
DataStage MS OLEDB 23

74-0128 August 2003
edit this statement, but you can specify the tables and columns to be
output. This is the default.

No. Specifies that the stage uses user-defined SQL statements. When this
option is selected, the User-defined page appears allowing you to edit
SQL statements.

• Transaction isolation. Specifies the isolation level that provides the neces-
sary consistency and concurrency control between transactions in the job
and other transactions for optimal performance. Choose one of the
following options:

Read committed. Takes exclusive locks on modified data and sharable
locks on all other data. Each query executed by a transaction sees only
data that was committed before the query (not the transaction) began.
This is the default.

Read uncommitted. Takes exclusive locks on modified data.
Transactions are not isolated from each other. So that they do not
adversely affect other transactions, transactions running at this level are
usually read-only.

Repeatable read. The transaction waits until rows write-locked by other
transactions are unlocked. This prevents it from reading any dirty data.
The transaction holds read locks on all rows it returns to the application
and write locks on all rows it inserts, updates, or deletes.

Serializable. Takes exclusive locks on modified data and sharable locks
on all other data. The transaction waits until rows write-locked by other
transactions are unlocked. This prevents it from reading any dirty data.

• Array size. The maximum number of rows read at a time, that is, the array
binding size. Delayed retrieval helps to reduce network traffic, resulting in
better performance. If the value for this property exceeds the provider-
specified limit, it is set to the provider limit. The default is 100.

• Trace properties. If selected, adds tracing information about stage and link
properties to the log at run time.

• Trace performance. If selected, adds tracing information about perfor-
mance, such as link timing information, to the log.

• Trace events. If selected, adds tracing information about important events,
such as initialization messages, to the log.

• Description. Optionally enter text to describe the purpose of the output
link.
24 DataStage MS OLEDB

August 2003 74-0128
Columns Page

This page contains the column definitions for the data being output on the chosen
link. The column definitions are used in the order they appear in the Columns grid.
The Columns page behaves the same way as the Columns page in the ODBC
stage. For a description of how to enter and edit column definitions, see DataStage
Designer's Guide.

The column definitions for output and reference links contain a key field. Key
fields are used to join primary and reference inputs to a Transformer stage.
MS OLEDB key reads the data by using a WHERE clause in the SQL SELECT
statement.

Selection Page

This page is used primarily with generated SQL queries. It contains optional SQL
SELECT clauses, such as WHERE, HAVING, or ORDER BY for the conditional
extraction of data.

If you want to use the additional SQL SELECT clauses, you must enter them on the
Selection page of the Output page. These clauses are appended to the SQL state-
ment that is generated by the stage. If this link is a reference link, only the WHERE
clause is enabled.

The Selection page is divided into two areas (panes). You can resize an area by
dragging the split bar.

• WHERE clause. This text box allows you to insert an SQL WHERE clause
to specify criteria that the data must meet before being selected.

• Other clauses. This text box allows you to insert a HAVING or an ORDER
BY clause.

SQL Page

This page displays the stage-generated or user-defined SQL statements used to
read data from OLE DB. It contains the Generated, User-defined, Before, and
After pages, which are the same as those for the Input page under the SQL page.

• Generated. This contains the SQL statements constructed by DataStage as a
result of the Output action from the General page of the Output page. You
cannot edit these statements, but you can use Copy to copy them to the
Clipboard for use elsewhere.

• User-defined. This page is displayed by default. It contains the SQL state-
ments executed to read data from the data source. The GUI displays the
stage-generated SQL statement on this page as a starting point. However,
DataStage MS OLEDB 25

74-0128 August 2003
you can enter any valid, appropriate SQL statement. The box size changes
proportionately when you resize the main window to display long SQL
statements.

• Before. This page contains the SQL statements executed before the stage
processes any job data rows. Use a semicolon (;) to separate multiple
BeforeSQL statements. The SQL statement is entered in a resizable edit box.
Execution occurs immediately after a successful data source connection.
The Before and After pages look alike.

• After. This page contains the SQL statements executed after the stage
processes any job data rows. Use a semicolon (;) to separate multiple
AfterSQL statements. The SQL statement is entered in a resizable edit box.
Execution occurs immediately after the last row is processed, before the
data source connection is terminated. The Before and After pages look
alike.

Reading Data from OLE DB
The following sections describe the differences when you use generated queries or
user-defined queries to read data from a data source into DataStage.

The column definitions for reference links must contain a key field. You use key
fields to join primary and reference inputs to a Transformer stage. MS OLEDB key
reads the data by using a WHERE clause in the SQL SELECT statement.

Using Generated Queries

By default, DataStage extracts data from a data source using an SQL SELECT state-
ment that it constructs. The SQL statement is automatically constructed using the
table and column definitions that you entered on the Output page.
26 DataStage MS OLEDB

August 2003 74-0128
When you select Yes in SQL generation, data is extracted from a data source using
an SQL SELECT statement constructed by DataStage. SQL SELECT statements
have the following syntax:

SELECT clause FROM clause
�WHERE clause�
�GROUP BY clause�
�HAVING clause�
�ORDER BY clause�;

When you specify the data sources to use and the columns to be output from the
MS OLEDB stage, the SQL SELECT statement is automatically constructed and can
be viewed by clicking the SQL tab on the Output page.

For example, if you extract the Name, Address, and Phone columns from a table
called Table1, the SQL statement displayed of the SQL page is:

SELECT Name, Address, Phone FROM Table1;

The SELECT and FROM clauses are the minimum required and are automatically
generated by DataStage. If you want to use the following additional SQL SELECT
clauses, you must enter them on the Selection page of the Output page:

Using User-Defined Queries

Instead of using the SQL statement constructed by DataStage, you can enter your
own SQL statement for each MS OLEDB output link. To enter an SQL statement:

1. Set SQL generation to No on the General page of the Output page. The User-
defined page on the SQL page is enabled. It looks like the User-defined page
for the input link.

2. You can edit the statements or drag and drop the selected columns into
your user-defined SQL statement. You must ensure that the table defini-
tions for the output link are correct and represent the columns that are

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

GROUP BY clause Groups rows to summarize results.

HAVING clause Specifies the criteria that grouped rows must meet to be
selected.

ORDER BY clause Sorts selected rows.
DataStage MS OLEDB 27

74-0128 August 2003
expected. The result set generated from this statement returns at least one
row. If more than one result set is produced, only the first set is used.

3. Click OK to close this dialog box. Changes are saved when you save your
job design.

Restrictions for using user-defined SQL queries are as follows:

• If you use multiple SQL SELECT statements to read the data, only the last
statement returns the result.

• Nested SQL statements are not supported.

• If more than one result set is produced, only the first set is used.

• Rowsets resulting from the execution of BeforeSQL and AfterSQL state-
ments are not processed.

• For reference output links, the SELECT statement should have parameter
markers (?) specified in the column definitions and the “Where clause”
property. The parameter markers must be in the same order as the associ-
ated key columns listed in the stage properties.

OLE DB Server Data Type Support
The following table documents the support for OLE DB character, numeric, and
date data types. It summarizes the data types for DataStage SQL type definitions,
and their OLE DB SQL server data types:

DataStage SQL Data Type OLE DB Data Type

SQL_CHAR DBTYPE_WSTR (Unicode string)

SQL_VARCHAR DBTYPE_WSTR

SQL_STRING DBTYPE_WSTR

SQL_LONGVARCHAR DBTYPE_WSTR

SQL_BINARY DBTYPE_BYTES (array of bytes)

SQL_VARBINARY DBTYPE_BYTES

SQL_LONGVARBINARY DBTYPE_BYTES

SQL_NUMERIC DBTYPE_R8 (double)

SQL_DECIMAL DBTYPE_R8
28 DataStage MS OLEDB

August 2003 74-0128
DataStage SQL Data Type OLE DB Data Type

SQL_FLOAT DBTYPE_R8

SQL_REAL DBTYPE_R8

SQL_DOUBLE DBTYPE_R8

SQL_INTEGER DBTYPE_I4 (long)

SQL_SMALLINT DBTYPE_I4

SQL_BIGINT DBTYPE_I4

SQL_TINYINT DBTYPE_I4

SQL_BIT DBTYPE_I4

SQL_DATE DBTYPE_DBDATE

SQL_TIME DBTYPE_DBTIME

SQL_TIMESTAMP DBTYPE_DBTIMESTAMP
DataStage MS OLEDB 29

74-0128 August 2003
Stored Procedure Support
You can call stored procedures from the server MS OLEDB. The following rules
apply:

• Specify input parameters as literal values. Passing row values as parameter
values is not supported.

• Output parameters are not supported.

• You can call stored procedures as part of the BeforeSQL and AfterSQL
statements. Any result sets generated by the procedure are discarded.

• You can also call stored procedures as part of the user-defined SQL state-
ment for all links. The stored procedure must generate a row result set that
matches the stage output column definitions. Only one row result set is
processed, and any additional result sets are discarded. The input link
parameter count should correspond to the input action. For examples, see
“Using User-Defined SQL Statements” on page 20.

CREATE CUBE Statement
The CREATE CUBE statement defines the structure of a new local cube. This state-
ment shares much of the syntax for SQL-92 and the CREATE TABLE statement,
but has added syntax for cubes. Use the INSERT INTO statement to populate the
cube. For further details on the INSERT INTO statement, see “INSERT INTO State-
ment” on page 32.

The following sections document the syntax in Backus Naur Form (BNF) notation.
For more information about cubes, see “Pivot Table Service” in the online
Microsoft SQL Server for OLAP Services documentation.

CREATE CUBE Syntax in BNF Notation
The syntax for the CREATE CUBE statement uses BNF notation. BNF is a notation
format using a series of symbols and production rules that successively break
down statements into their components.

<create-cube-statement > ::= CREATE CUBE <cube name> <open paren>
DIMENSION <dimension name> [TYPE TIME],
<hierarchy def> [<hierarchy def>...]
[{, DIMENSION <dimension name> [TYPE TIME],
<hierarchy def> [<hierarchy def>...]}...] ,
MEASURE <measure name> <measure function def> [<measure format def>]
[<measure type def>]
30 DataStage MS OLEDB

August 2003 74-0128
[{, MEASURE <measure name> <measure function def> [<measure format def>]
[<measure type def>] }...]
[,COMMAND <expression>]
[,COMMAND <expression>...]
<close paren>
.<dimension name> ::= <legal name>
<hierarchy def> ::= [HIERARCHY <hierarchy name>,] <level def> [,<level def>...]
<level def> ::= LEVEL <level name> [TYPE <level type>] [<level format def>]
[<level options def>]
<level type> ::= ALL | YEAR | QUARTER | MONTH | WEEK | DAY | DAYOFWEEK
|DATE | HOUR | MINUTE | SECOND
<level format def> ::= FORMAT_NAME <expression> [FORMAT_KEY <expression>]
<level options def> ::= OPTIONS (<option_list>)
<option_list> :: = <option> [,<option_list>]
<option> ::= UNIQUE | SORTBYNAME | SORTBYKEY
<measure function def> ::= FUNCTION <function name>
<measure format def> ::= FORMAT <expression>
<function name> ::= SUM | MIN | MAX | COUNT
<measure type def> ::= TYPE <supported OLEDB numeric types>
<supported OLEDB numeric types> :: = DBTYPE_I1 | DBTYPE_I2 | DBTYPE_I4
| DBTYPE_I8 | DBTYPE_UI1 | DBTYPE_UI2 | DBTYPE_UI4 | DBTYPE_UI8 |
DBTYPE_R4 | DBTYPE_R8 | DBTYPE_CY | DBTYPE_DECIMAL | DBTYPE_NUMERIC
| DBTYPE_DATE

DIMENSION Clause. The name given to a TYPE ALL level applies the specified
name to the ALL member rather than the ALL level. The ALL level always has the
name All. For example, the clause LEVEL [All Customers] TYPE ALL creates a
level named (All) containing a single member named [All Customers]. There is no
[All Customers] level.

COMMAND Clause. If the <expression> value has spaces, use brackets to
surround the whole expression. We do not recommend using quotation marks
because the body of the command can include quotation marks. (OLAP Services
supports nested brackets but not nested quotation marks.)

Example
CREATE CUBE Sales
(
DIMENSION Time TYPE TIME,
HIERARCHY [Fiscal],
LEVEL [Fiscal Year] TYPE YEAR,
LEVEL [Fiscal Qtr] TYPE QUARTER,
LEVEL [Fiscal Month] TYPE MONTH OPTIONS (SORTBYKEY, UNIQUE),
HIERARCHY [Calendar],
LEVEL [Calendar Year] TYPE YEAR,
DataStage MS OLEDB 31

74-0128 August 2003
LEVEL [Calendar Month] TYPE MONTH,
DIMENSION Products,
LEVEL [All Products] TYPE ALL,
LEVEL Category,
LEVEL [Sub Category],
LEVEL [Product Name],
DIMENSION Geography,
LEVEL [Whole World] TYPE ALL,
LEVEL Region,
LEVEL Country,
LEVEL City,
MEASURE [Sales]
FUNCTION SUM
FORMAT ’Currency’,
MEASURE [Units Sold]
FUNCTION SUM
TYPE DBTYPE_UI4
)

INSERT INTO Statement
The INSERT INTO statement is similar to the SQL-92 syntax for creating and
populating tables. It populates a local cube with dimension members. If the local
cube is in multidimensioned (MOLAP) storage mode, the INSERT INTO statement
also populates the local cube with data. The INSERT INTO statement is used after
a CREATE CUBE statement to create a local cube.

Backus Naur Form (BNF) Notation
The following syntax in BNF notation documents the INSERT INTO statement.

<insert-into-statement> ::= INSERT INTO <target-clause>
[<options-clause>] [<bind-clause>] <source-clause>
<target-clause> ::= <cube-name> <open-paren> <target-element-list>
<close-paren>
<target-element-list> ::= <target-element>[, <target-element-list>]
<target-element> ::= [<dim-name>.[<hierarchy-name>.]]<level-name>
| <time-dim-name>
| [Measures.]<measure-name>
| SKIPONECOLUMN
<level-name> ::= <simple-level-name> | <simple-level-time>.NAME
|<simple-level-time>.KEY
<time-dim-name> ::= <dim-name-type-time> | <dim-name-type-time>.NAME
| <dim-name-type-time>.KEY
32 DataStage MS OLEDB

August 2003 74-0128
<options-clause> ::= OPTIONS <options-list>
<options-list> ::= <option>[, <options-list>]
<option> ::= <defer-options> | < analysis-options>
<defer-options> ::= DEFER_DATA | ATTEMPT_DEFER
<analysis-options> ::= PASSTHROUGH | ATTEMPT_ANALYSIS
<bind-clause> ::= BIND (<bind-list>)
<bind-list> ::= <simple-column-name>[,<simple-column-name>]
<simple-column-name> ::= <identifier>
<source-clause> ::= SELECT <columns-list>
FROM <tables-list>
[WHERE <where-clause>]
| DIRECTLYFROMCACHEDROWSET <hex-number>
<columns-list> ::= <column-expression> [, < columns-list>]
<column-expression> ::= <column-expression-name>
<column-expression-name> ::= <column-name> [AS <alias-name>]
| <alias name> <column-name>
<column-name> ::= <table-name>.<column-name>
| <column-function> | <ODBC scalar function> | <braced-expression>
<column function> ::= <identifier>(…)
<ODBC scalar function> ::= {FN<column-function>}
<braced-expression> ::= (…)
<tables list> ::= <table-expression> [, <table-list>]
<table-expression> ::= <table-name> [[AS] <table-alias>]
<table-alias> ::= <identifier>
<table-name> ::= <identifier>
<where clause> ::= <where-condition> [AND <where-clause>]
<where condition> ::= <join-constraint> | <application constraint>
<join-constraint> ::= <column-name> = <column-name>
| <open-paren><column-name> = <column-name><close-paren>
<application-constraint> ::= (…)
DataStage MS OLEDB 33

74-0128 August 2003
| NOT (…)
| (…) OR (…)
<identifier> ::= <letter>{<letter>|<digit>|<underline>|<dollar>|<sharp>}…

Names of Elements. These are level and measure names, sometimes qualified with
dimension name or the Measures keyword to avoid ambiguity. The Measures
keyword is case-sensitive in binary comparisons. If you use binary comparison or
are unsure of your comparison method, use Measures as shown with initial
uppercase.

Each level and each measure in a cube is derived from a column in the SELECT
clause.

The Columns Specified in the Associated SELECT Clause. These are bound to the
elements of the INSERT INTO statement in the order specified and in a one-to-one
relationship.

Each level can be derived from two columns, with one used as a name column and
the other used as a key column. Both columns must be in the same table. If there
are two columns associated with a level, use the .NAME or .KEY suffix in the
INSERT INTO statement after the level name.

If a column specified in the SELECT clause does not have a related element in the
INSERT INTO statement, use the SKIPONECOLUMN keyword as a placeholder
for the unused column. You can use SKIPONECOLUMN more than once.

Dimension of TYPE TIME. Specify by the name of the dimension. The dimension
name correlates the entire dimension with a single column in the source table that
contains data with a date or time data type. The TYPE <level type> levels, identi-
fied for the time dimension in the CREATE CUBE statement cause the time
information to be extracted from the source column specified in the SELECT
clause. See “Example 4” on page 36.

The WHERE Clause. This clause can have both application and join constraints.
The parser parses only join constraints, using the join constraint to find a path from
all tables to the fact table and the dimension tables. The application constraint is
used only to specify constraints on a fact table and is passed through unmodified.

Expressions Between Parentheses. These expressions are treated as application
constraints. For example, if the expression Sales.Product_ID = Prod-
ucts.Product_ID AND Sales.Customer_ID = Customers. Customer_ID is enclosed
34 DataStage MS OLEDB

August 2003 74-0128
in parentheses, it is treated as an application constraint and is not used as a join
constraint. Use parentheses only around application constraints in your applica-
tion, for example, (Product.Price < 100 AND Product.Category = 1).

BIND Clause. This is used to bind level and measure names specified with column
names used to create rowsets.

AS <alias-name> Syntax. This is not supported for local cubes in relational
(ROLAP) storage mode.

Example 1
INSERT INTO MyCube (Year, Month.Name, Month.Key, [Product Group],
[Product Name], Country, Sales, Cost)
OPTIONS DEFER_DATA
SELECT MyTable.Year, MyTable.Month, MONTH(MyTable.Month),
MyTable.ProdGroup, MyTable.ProdName, MyTable.Country, MyTable.Sales,
MyTable.Cost
FROM MyTable
WHERE MyTable.SalesRep = "Amir" and MyTable.CustomerGroup = "Industry"

Example 2
INSERT INTO MyCube (Year, Month, [Product Group], [Product Name], Country,
Sales, Cost)
OPTIONS PASSTHROUGH SELECT MyTable.Year, MyTable.Month,
MyTable.ProdGroup, MyTable.ProdName, MyTable.Country, MyTable.Sales,
MyTable.Cost
FROM MyTable
WHERE MyTable.SalesRep = "Amir" and MyTable.CustomerGroup = "Industry"

Note: The PASSTHROUGH option specifies that the SELECT clause that
follows it is to be passed directly to the database engine with no
parsing by Pivot Table Service.

Example 3
INSERT INTO MyCube (Year, Month, [Product Group], [Product Name], Country,
Sales, Cost)
DIRECTLYFROMCACHEDROWSET 0x00001284

Note: The DIRECTLYFROMCACHEDROWSET keyword directs data to be
read from the address in memory that is identified immediately after
the keyword. You must specify the correct address in memory in your
application. At run time, the number is assumed to be the in-process
address of an IUnknown pointer to an OLE DB rowset.
DataStage MS OLEDB 35

74-0128 August 2003
Example 4
CREATE CUBE MyCube (
DIMENSION TimeDim TYPE TIME,
LEVEL MyYear TYPE YEAR,
LEVEL MyQtr TYPE QUARTER,
LEVEL MyMonth TYPE MONTH,
DIMENSION Products,
LEVEL [Product Group],
LEVEL [Product Name],
DIMENSION Geography,
LEVEL State,
LEVEL City,
MEASURE [Sales]
FUNCTION SUM
FORMAT ’Currency’,
MEASURE [Units Sold]
FUNCTION SUM
)
INSERT INTO MyCube (TimeDim, [Product Group], [Product Name], State, City,
Sales, [Units Sold])
OPTIONS DEFER_DATA
SELECT MyTable.TransDate, MyTable.ProdGroup, MyTable.ProdName,
MyTable.State, MyTable.City, MyTable.Sales, MyTable.UnitsSold
FROM MyTable
WHERE MyTable.SalesRep = "Jacobsen" and MyTable.CustomerGroup = "Industry"

Passthrough OPTION
The PASSTHROUGH option provides advanced query processing. It causes the
SELECT clause to be passed directly to the source database without modification
by Pivot Table Service. If PASSTHROUGH is not specified, Pivot Table Service
36 DataStage MS OLEDB

August 2003 74-0128
parses the query and formulates a set of queries equivalent to the original. These
queries are optimized for the source database and index structures. This set of
queries is often more efficient than the specified query.

The DEFER_DATA option causes the query to be parsed locally. It is executed only
when necessary to retrieve data to satisfy a user request. DEFER_DATA specifies
that a local cube is defined in the ROLAP storage mode.

The ATTEMPT_DEFER option causes Pivot Table Service to parse the query and
defer data loading if successful. If the query cannot be parsed, it processes the spec-
ified query immediately as if PASSTHROUGH were specified.

The ATTEMPT_ANALYSIS option causes Pivot Table Service to parse the query
and formulate an optimized set of queries (process in the MOLAP mode). If the
query cannot be parsed, it processes the specified query immediately as if
PASSTHROUGH were specified.

Passthrough Compatibility

The following table summarizes the options for the INSERT INTO statement for
the MOLAP and ROLAP storage modes. PT indicates PASSTHROUGH
functionality.

Option Parse
Neither
PASSTHROUGH
Nor ATTEMPT_
ANALYSIS

PASS-
THROUGH

ATTEMPT_
ANALYSIS

Neither DEFER_DATA
nor
ATTEMPT_ DEFER

Succeeded

Failed

MOLAP

Error

MOLAP (PT)

N/A

MOLAP

MOLAP (PT)

DEFER_DATA Succeeded

Failed

ROLAP

Error

Error

N/A

ROLAP

Error

ATTEMPT_ DEFER Succeeded

Failed

ROLAP

MOLAP (PT)

MOLAP (PT) ROLAP
DataStage MS OLEDB 37

74-0128 August 2003
38 DataStage MS OLEDB

	DataStage MS OLEDB
	Introduction
	Functionality
	Terminology
	Installing the Plug-In
	Defining the MS OLEDB Stage
	Connecting to an OLE DB Data Source
	Creating and Populating Cubes
	Defining Character Set Mapping
	Defining an Input Link
	About the Input Page
	General Page
	Columns Page
	SQL Page

	Writing Data to OLE DB
	Using Generated SQL Statements
	Using User-Defined SQL Statements
	Using BeforeSQL Statements
	Using AfterSQL Statements

	Defining an Output Link
	About the Output Page
	General Page
	Columns Page
	Selection Page
	SQL Page

	Reading Data from OLE DB
	Using Generated Queries
	Using User-Defined Queries

	OLE DB Server Data Type Support
	Stored Procedure Support
	CREATE CUBE Statement
	CREATE CUBE Syntax in BNF Notation
	Example

	INSERT INTO Statement
	Backus Naur Form (BNF) Notation
	Example 1
	Example 2
	Example 3
	Example 4

	Passthrough OPTION
	Passthrough Compatibility

